<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

UNIVERSITY

Parameter		Minimum	Optimal	Maximum	
Temperature (°C)		0	30-37	45	
рН		4.4	7.0	9.4	
a _w		0.92	0.99	> 0.99	
Salt (% in water phase	se)	< 0.5	0.7	12 - 16	
	D · 25-	- 4.0 min			

INTRODUCTION: *L. MONOCYTOGENES*

- Important for food industry as *Listeria* is able to grow at refrigerated temperatures and is able to persist in food-processing areas and equipment
- Cause of listeriosis
- Susceptible population: YOPI's
- Specific regulation for RTE-foods
- What is RTE?

© FMFP-UGent 2019 FIMM studiedag

INTRODUCTION: EU 2073/2005

Always belonging to category III

- pH ≤ 4.4
- a_w ≤ 0.92
- pH ≤ 5.0 and $a_w ≤ 0.94$
- Shelf life less than five days

Other products belonging to category III should be scientifically proven

- Characteristics of the product (pH, a_w, salt, concentration of preservatives etc.)
- Available scientific literature and research data
- Predictive mathematical modelling
- Challenge testing

	Growth rate	Growth potential
Strains	Two strains in monoculture	Cocktail of minimally two strains
Temperature	Constant	Defined temperature profile (takin into account reasonably foreseer abuse at consumer stage)
Number of inoculated samples	Min. 15 for each growth curve	Min. 9 (for one batch in triplicate)
Advantages	Extrapolation to other temperatures is possible	Easy Cheaper
Disadvantages	Only valid for the specific product	Only valid for the specific produc
	Labour intensive	Intermediate points are recomme

STUDIES ON GROWTH POTENTIAL

1. Description of the product (group)

- FBO should have an idea on the variability on product characteristics
- FBO should identify the opportunities for contamination
- Homogeneity of the food product should be considered

Important for the inoculation procedure

26th February 2019

STUDIES ON GROWTH POTENTIAL

3. Evaluating growth potential in the food based on literature data and/or predictive models

Freeware software packages:

- ComBase: based on a large database of studies (not necessarily peer reviewed)
- MRV: based on the ComBase database
- Food Safety and Spoilage predictor: product based and peer reviewed data
- DMRI: product based and peer reviewed data

Background knowledge on the principles of developing predictive models as well as on food microbiology is essential

STUDIES ON GROWTH POTENTIAL

3. Evaluating growth potential in the food based on literature data and/or predictive models

Case study: meat product stored in MAP

Important to be critical on the outcome of a predictive model

Other preservatives might be present: lactic acid, acetic acid,...

➔ If the FBO has no database with these data, it has no advantage to use predictive models

GHENT UNIVERSITY 26th February 2019

Ī

© FMFP-UGent 2019 FIMM studiedag

Selection of the strains

- Well characterized: knowing the cardinal values
- Using a cocktail

Standardization of the test inoculum

- Adaptation to cold temperatures (if needed)
- Essential to be able to inoculate at sufficiently low inoculum levels

26th February 2019

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Storage conditions

Fase in de	Informatie over de op	slagtijd beschikbaar		
keten	Ja	Nee		
		houdbaarheid <u><</u> 21 dagen	houdbaarheid > 21 dagen	
Producent	Gemiddelde opslagtijd	1/3 houdbaarheidsperiode	7 dagen	
Retail	Gemiddelde opslagtijd	1/2 resterende tijd	1/2 resterende tijd	
Consument	Resterende tijd	1/2 resterende tijd	1/2 resterende tijd	

Temperature:

Producer and retail: 7°C or measured data Consumer: 9°C

Source: NVWA informatieblad 85

26th February 2019

© FMFP-UGent 2019 FIMM studiedag

CHALLENGE TE	EST IN LABOR	ATORY	
How to determine	shelf life?		
Group 1 : use by food products for which the shelf-	life date is limited by food safety parameters		
	<u>─</u>		
Day 0 use by date ≈ End of Production microbial food safety risk	spoilage potential		
Group 2 : <i>use by</i> food products for which the shelf-l	ife date is limited by quality parameters		
Day 0	mionchiel find onfant side		
End of Production use of value \approx spoilage risk		Van Boxstael et al. (2013)	
GHENT			
UNIVERSITY 26th February 2019	© FMFP-UGent 2019	FIMIM studiedag	19

Microbial analyses

- Mandatory: *L. monocytogenes* detection and/or enumeration
- Recommended: specific spoilage organism
- According to (inter)national standards

> Under accreditation

26th February 2019

© FMFP-UGent 2019 FIMM studiedag

Calculating growth potential:

Batch	Concentration Day 0	Concentration Day end	Growth potential	Growth potential product
	2.59	4.30		
1	2.23	4.48		
	2.45	4.30		
	2.18	3.54		
2	2.11	3.74		
	2.11	3.79		
	2.59	5.51		
3	2.46	4.44		
	2.48	4.39		
GHENT JNIVERSITY	26th February 2019		© FMFP-UGent 2019 FIMM studiedag	

CHALLENGE TEST IN LABORATORY

Calculating growth potential: according EU

Batch	Concentration Day 0	Concentration Day end	Growth potential	Growth potential product
	2.59	4.30		
1	2.23	4.48	4.30 – 2.45 = 1.85	
	2.45	4.30		
	2.18	3.54		
2	2.11	3.74	3.74 – 2.11 = 1.63	1.96
	2.11	3.79		
	2.59	5.51		-
3	2.46	4.44	4.44 - 2.48 = 1.96	
	2.48	4.39		
GHENT UNIVERSITY	26th February 2019		© FMFP-UGent 2019 FIMM studiedag	22

Calculating growth potential:

CHALLENGE TEST IN LABORATORY

Calculating growth potential: according NVWA

Batch	Concentration Day 0	Concentration Day end	Growth potential	Growth potential product
	2.59	4.30		
1	2.23	4.48	4.30 - 2.45 = 1.85	
	2.45	4.30		
	2.18	3.54		
2	2.11	3.74	3.74 – 2.11 = 1.63	3.03
	2.11	3.79		
	2.59	5.51		
3	2.46	4.44	5.51 - 2.48 = 3.03	
	If at day 248 the diffe	rence between the	highest and lowest value > 0.5	
	Highest value should	I be used to determ	ine growth potential	
GHENT UNIVERSITY	26th February 2019		© FMFP-UGent 2019 FIMM studiedag	24

Calculating growth potential:

	Concentration Day 0	Concentration Day end	Growth potential	Growth potential product
	2.59	4.30		
1	2.23	4.48		
	2.45	4.30		
	2.18	3.54		
2	2.11	3.74		
	2.11	3.79		
	2.59	5.51		
3	2.46	4.44		
	2.48	4.39		

CHALLENGE TEST IN LABORATORY

Calculating growth potential: suggestion FMFP-UGent

Batch	Concentration Day 0	Concentration Day end	Growth potential	Growth potential product
	2.59	4.30		
1	2.23	4.48	4.48 – 2.23 = 2.25	
	2.45	4.30		
	2.18	3.54		-
2	2.11	3.74	3.79 – 2.11 = 1.68	3.05
	2.11	3.79		
	2.59	5.51		-
3	2.46	4.44	5.51 – 2.46 = 3.05	
	2.48	4.39		
GHENT UNIVERSITY	Always consider the 26th February 2019	highest value at Da	© FMFP-UGent 2019 FIMM studiedag	RST CASE

Int	terpretation of results:		
_	Target value should always b	be: 'absence in 25 g'	
_	Tolerance value at the end o	f the manufacturing process is relate	ed to the
	growth potential		
	Growth potential (log CFU/g) during shelf life	Tolerance value at the end of the manufacturing process	
	Negative	< 100 CFU/g	
	Between 0.00 and 0.49	< 100 CFU/g	
	Between 0.50 and 0.99	< 10 CFU/g	
	Between 0.50 and 0.99 Between 1.00 and 1.99	Absence in 1 g	_
	Between 0.50 and 0.99 Between 1.00 and 1.99 Between 2.00 and 2.99	Absence in 1 g Absence in 10 g	_
	Between 0.50 and 0.99 Between 1.00 and 1.99 Between 2.00 and 2.99 More than 3.00	Absence in 1 g Absence in 10 g Absence in 25 g	-

GENERAL CONSIDERATIONS

End responsibility of conducting challenge test

- The FBO should define its product & production process and inform the consultant or lab having to conduct the study
- A representative product or batch should be defined or tailor made
- It should be described to which extent the results can or cannot be extrapolated to other food types

CONCLUSION

Important for each FBO:

- to inventory all necessary data
- to have thorough knowledge on their products

Decide whether a challenge test is necessary

Performing a challenge test on a food product can not be considered as a routine analyses and requires an extended preparation

26th February 2019

